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Step 2: Design Conservation Network

Design Steps: i O
: Current U %
1. Select (tiered) core areas focus o : ’
2. Create core area buffers '
3. Prioritize within buffered cores l p. -
4. Assess connectivity among cores . . .
5. Prioritize among core areas IR el e o,
6. Prioritize among linkages s
7. Prioritize within linkages * Socio-cultural
8. Identify restoration opportunities and e.:cono.mic
9. Determine management needs considarshgnsat

all steps



Step 2: Design Conservation Network

1. Select (tiered) core areas

Three scenarios:

" Hcosystem approach (coarse filter)...

based solely on ecosystem conditions

" Species approach...
based solely on focal species
considerations

" Combined ecosystem-species approach...
based on the complement of ecosystems
and species
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Q1. TNC resiliency vs DSL IEI?
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Ecological integrity

“Ecological integrity is a multi-faceted and multi-scale
concept comprised of several inter-related
components that operate at multiple scales (in space
and time)”

» Ecological integrity. . .refers to the capability
of an area to sustain ecological functions; in
particular, the ability to support biodiversity and
the ecosystem processes necessary to sustain
biodiversity over the short and long term,
especially in the face of disturbance and stress.



Local ecological integrity

“An integral site is intact, highly connected and resilient”

" Intactness...refers to the freedom from human
impairment (anthropogenic stressors)

" Connectivity. . .refers to the propensity to
conduct ecological flows (including individuals)
across the landscape

" Resiliency...refers to the capacity to recover
from or adapt to disturbance and stress



Local ecological integrity

“Resiliency 1s a complex, multi-faceted concept
comprised of several inter-related components that
operate at multiple scales (in space and time)”

| ® Similarity. . .refers to the ecological similarity of | i

" Adaptive capacity...refers to the ecological
diversity and accessibility of the neighborhood

i the neighborhood i Short
| = Connectedness. . .tefets to the ecological Tt
| _ similarity and accessibility of the neighborhood i
| = Ecosystem diversity...refers to the ecological !
i diversity of the neighborhood i Long
: | term
i i



Local ecological integrity

“An integral site is intact, highly connected and resilient”
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Q1. TNC resiliency vs DSL IEI?

» Technical comparison

" Components: » Components:

" [ andscape complexity: " Stressor metrics: 19
f(landform wvariety, metrics, terrestrial vs
elevation variability, aquatic, kernels, 30 m
wetland density), 30 m resolution
resolution " Similarity

= Connectedness: static, " Connectedness:
natural vs developed, dynamic, unique

90m resolution settings, 30m resolution
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Q1. TNC resiliency vs DSL IEI?

" Scaling of index

TNC Geopliylscal settings D, cologieal sysiems
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Q1. TNC resiliency vs DSL IEI?
" TNC resiliency emphasizes connectivity with
diverse geophysical settings

= DSL IEI emphasizes intactness and connectivity
with similar ecological settings

" TNC resiliency is scaled by coarse-grained
geophysical settings (geology and elevation)

" DSL IEI 1s scale by fine-grained ecological
systems (macrogroup level)
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Q1. TNC resiliency vs DSL IEI?
" Scaling of index
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Q2. What does the 7op x% mean?
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Q2. What does the 7Top x% mean?
(

-'I"' * g - - -
». Combined selection index
W CTR weighted mean

. #% Tiered core areas

T £ L Bottom 60%
(T ‘ # | W Top 40%

'R o VB8 Y B Top 30%
5}5&* ' Bl Top 20%

'|I ? r i [ - + ® 1

el """ n ¥y . 'J ‘Fé. P, *& 4

i ¢ f C o
TR SR

10 Kilomeatars




Step 2: Design Conservation Network

Q2. What does the 7op x% mean?
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Q3. Tradeoffs between slice and algorithmic approach?

(
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Q3. Tradeoffs between slice and algorithmic approach?

e
- ‘ Cnmbmed selection index
CTR weighted mean
Tﬂ]) 30% non-aquatics
MGI‘E sn]aller core areas Fewer, larger core areas
Core areas are only the “best” Core areas are “grown out™ from
examples of ecosystems (“slice” — a “seed” of a small amount of
ofthe highest values) high value areas to create more
consolidated units
Diversity Best examples of ecosystem diversity are | Some loss of high value ecosystems, but
retained functions and services may be more intact
Condition On average, core areas are smaller and Coreareas are larger and more intact;
less intact complexes of ecosystems are retained
together
Connectedness | More “stepping stones™ for greater long- | Greater connectedness within core areas
distance connectivity
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Q4. Best way to ensure distribution of cote areas?

TNC Ecoregions - colored
HUCS - gray lines

i lactnan F oo
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Q4. Best way to ensure distribution of cote areas?

Combined Selection Index Combined Selection Index
Top 20% core areas Top 20% core arcas
CTR ve HUCS sealing CTR vs HUCS scaling
. CTH sealed m HUCS scaled
R HUCS sealed TR scaled
To select core areas, ecosystem results are scaled by:
Subwatershed 3 Full Connecticut River
(e.g., HUC 8) Watershed
Diversity By ensuring more uniform Likely that best examples of diversity
representation, may enhance overall represented, with more intact functions
genetic and species diversity and processes
Condition On average, core areas may be in lesser | Larger. more intact areas likely to be in
conditionand less resilient better condition and more resilient
Connectedness | Greater network-wide connectivity Greater short-distance connectivity where
because core areas are more evenly core areas are clustered but less
distributed connectivity where core areas are sparser
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Q5. Display of aquatic vs. terrestrial buffered cores?

Combined Selection Index Comn bined Selection Tndex

CTR weighted mean CTR weighted mean

Tiered terrestrial plus aquatic - Top 20% terrestrial plus agquatic
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Q5. Display of aquatic vs. terrestrial buffered cores?

Combincd Scleetion Indes
CTR weighted mean

Top 20% agualic core areas
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Q6. Tiered vs. continuous matrix?

Terrestrial Core Arcas
Gradien! seleclion imlex

mr High:1
T Lows 0 -5 -

Terrestrial Core Areas
Tiered seleclion index
EEVery low {0 -0.3)

P Low (0.3 - 0.5) S
e Medivumn (0.5 - 0.7)

= High (0.7~ 1]
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Q6. Tiered vs. continuous matrix?

e i C
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Q7. Terminology?

- - -
*ombined Sclection Index \
TR weighled mean :

‘op 20% lerrestrial core areas

Combined selection index |11 WSS
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Step 2: Design Conservation Network

Design Steps: i O
1. Select (tiered) core areas 2 = .’
2. Create core area buffers '
3. Prioritize within buffered cores ~ [o,
4. Assess connectivity among cores | . . |
5. Prioritize among core areas Current * Field vetification
6. Prioritize among linkages focus St
7. Prioritize within linkages * Socio-cultural
8. Identify restoration opportunities and e.:cono.mic
9. Determine management needs COoNSRralon A

all steps
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4, Assess connectivity gL
. B Core areas
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areas
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4. Assess connectivity Top 20% CTR scaled
Core areas

among COte ateas Conductance 10k
g High:o.o13

Low: 0O

a) Build random low cost |’
paths between cores
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5. Prioritize among core Top 20% CTR scaled.
B Core areas

ate as @® Nodeimportance

—— L3

e |
" 1
1

" Node importance index

* Based on node
contribution to the
probability of
connectivity (PC)
of the network
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6. Prioritize amon s il
g P
e B Core areas
linkages —lnkages

" [ ink importance index

* Based on link
contribution to the
probability of
connectivity (PC)
of the network
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6. Prioritize amon Top 20% CTR scaled
g P
e B Core areas
llnkages —Linl-:irnpul'tmu'e-.__ k

" [ ink importance index

* Based on link
contribution to the
probability of
connectivity (PC)
of the network
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7. Prioritize within it i
CE]]"L‘- g2I'eas

linkage S Conductance 10k

- High : o.ong
- Low: 0O

" Conductance index
" Irreplaceability index
" Vulnerability index

* Relative probability of
flow through a call
(function of local

resistance, node size,

quality and proximity)
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7. Prioritize within Top 20% CTR scaled
o Core areas
llnkage S Irreplaceability
p High - 0158

Low: 0

" Conductance index
" Irreplaceability index
" Vulnerability index

e Relative concentration
of paths through a call

(function of local

resistance and path

irreplaceability)
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7. Prioritize within
linkages
" Conductance index

" [Irreplaceability index
" Vulnerability index

* Relative probability of
developing an
irreplaceable cells that
has a high relative
probability of use

Terrestrial Core Areas

Top 20% CTR scaled
Ii-‘-l:]T'l':"- areas

Vulnerability*

m High : 0.000317

Low: 0
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8. Identify restoration
oppotrtunities

* Road passage
structures

e Road-stream
CrOSSINgs

e Dams

e Wetland /forest
restoration

(phase 3)
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8. Identify restoration

oppotrtunities
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8. Identify restoration
oppotrtunities
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9. Determine management
needs (and prioritize
within core areas,
buffets and corridots)

* Are there habitat
management needs for
particular species?

* If so, what are they and 5SS =
where should they occur? o,

e [s this best handled
outside of the
conservation design?
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Key Decisions:
1. Terrestrial buffer-core area selection and delineation
a) Slice or algorithmic approach?
b) Size and configuration (min size; fewer larger vs
more smaller)?

c) Spread barriers?
d) CTR vs HUCS (or other) scaling?

2. Aquatic buffer-core area selection and delineation
a) What spatial units to user
b) What method for delineating buffers?

3. How much area to allocate to buffer-cores?

?

4. What’s the best way to display the core area results?



- PrO]ect website:

WWW.UMass. edu / landeco / research/dsl/dsl.html
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